direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×D7, C7⋊C23, C14⋊C22, (C2×C14)⋊3C2, SmallGroup(56,12)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — C22×D7 |
Generators and relations for C22×D7
G = < a,b,c,d | a2=b2=c7=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of C22×D7
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 7A | 7B | 7C | 14A | 14B | 14C | 14D | 14E | 14F | 14G | 14H | 14I | |
size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | ζ75+ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | ζ74+ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ75-ζ72 | ζ76+ζ7 | ζ75+ζ72 | -ζ74-ζ73 | orthogonal lifted from D14 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ74-ζ73 | ζ75+ζ72 | ζ74+ζ73 | -ζ76-ζ7 | orthogonal lifted from D14 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | orthogonal lifted from D14 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ76-ζ7 | ζ74+ζ73 | ζ76+ζ7 | -ζ75-ζ72 | orthogonal lifted from D14 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | orthogonal lifted from D14 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | orthogonal lifted from D14 |
ρ19 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | ζ76+ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | ζ74+ζ73 | orthogonal lifted from D14 |
(1 27)(2 28)(3 22)(4 23)(5 24)(6 25)(7 26)(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 21)(7 20)(8 24)(9 23)(10 22)(11 28)(12 27)(13 26)(14 25)
G:=sub<Sym(28)| (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,19)(2,18)(3,17)(4,16)(5,15)(6,21)(7,20)(8,24)(9,23)(10,22)(11,28)(12,27)(13,26)(14,25)>;
G:=Group( (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,19)(2,18)(3,17)(4,16)(5,15)(6,21)(7,20)(8,24)(9,23)(10,22)(11,28)(12,27)(13,26)(14,25) );
G=PermutationGroup([[(1,27),(2,28),(3,22),(4,23),(5,24),(6,25),(7,26),(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,21),(7,20),(8,24),(9,23),(10,22),(11,28),(12,27),(13,26),(14,25)]])
G:=TransitiveGroup(28,9);
C22×D7 is a maximal subgroup of
D14⋊C4 D7⋊A4
C22×D7 is a maximal quotient of C4○D28 D4⋊2D7 Q8⋊2D7
Matrix representation of C22×D7 ►in GL3(𝔽29) generated by
28 | 0 | 0 |
0 | 28 | 0 |
0 | 0 | 28 |
28 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 28 | 3 |
1 | 0 | 0 |
0 | 0 | 28 |
0 | 28 | 0 |
G:=sub<GL(3,GF(29))| [28,0,0,0,28,0,0,0,28],[28,0,0,0,1,0,0,0,1],[1,0,0,0,0,28,0,1,3],[1,0,0,0,0,28,0,28,0] >;
C22×D7 in GAP, Magma, Sage, TeX
C_2^2\times D_7
% in TeX
G:=Group("C2^2xD7");
// GroupNames label
G:=SmallGroup(56,12);
// by ID
G=gap.SmallGroup(56,12);
# by ID
G:=PCGroup([4,-2,-2,-2,-7,771]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^7=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C22×D7 in TeX
Character table of C22×D7 in TeX